SW Hyperspace Travel Times

From OakthorneWiki
Jump to navigationJump to search

Astrogation

Astrogation involves the use of a navcomputer to plot a hyperspace course. The calculations involved are insanely complicated, and require an up-to-date set of charts.

  • This is an Intellect (Astrogation) test. The distance being traveled sets the Difficulty, time to calculate, and base duration of the trip (and number of jumps taken during the trip).
  • The Astrometrics Record: Ships docking in a space port are permitted an exchange of astrometrics data with the spaceport systems, downloading their information to the port (giving the port up to date data on where they've been) in exchange for uploading the port's compiled astrometics information. The downside of this, of course, is that this registers (by transponder identity) each ship's arrival and previous travels with the spaceport in question.

Modifiers

Situation Modifier
Astrometrics out of date +Challenge-die.png per step
High stress during calculations +Challenge-die.png
Damage navcomp or astromech +Challenge-die.pngChallenge-die.png
Origin is along a Major Hyperspace Route +Boost-die.png
Destination is along a Major Hyperspace Route +Boost-die.png
Origina is along no Hyperspace Route +Setback-die.png
Destination is along no Hyperspace Route +Setback-die.png
Ship has taken Damage Less than half Threshold: +Setback-die.png
More than half Threshold: +Setback-die.pngSetback-die.png
Arrival Point In atmosphere: +Setback-die.pngSetback-die.pngSetback-die.pngChallenge-die.png
In orbit: +Setback-die.pngSetback-die.pngSetback-die.png
Lunary orbit: +Setback-die.pngSetback-die.png
Five minutes away: +Setback-die.png
Ten minutes away: No modifier
One hour away: +Boost-die.png
Edge of system: +Boost-die.pngBoost-die.png


  • Difficulty: The Difficulty of this test varies starts at a base of Difficulty-die.png. This is subject to the following modifiers:
    • Outdated, corrupt, or counterfeit navcharts: +Difficulty-die.png
    • Ship is Damaged: Less than half Threshold: +Difficulty-die.png. More than half Threshold: +Difficulty-die.pngDifficulty-die.png
    • Damaged Astromech or Navcomp: +Difficulty-die.pngDifficulty-die.pngDifficulty-die.png
    • Quick or Stressed Calculations: Upgrade Difficulty once
  • Hyperspace Routes: The proximity of both starting point and destination relative to hyperspace lanes is also relevant. The dice for both origin and destination are cumulative.
    • Origin or Destination is along a Major Hyperspace Route: +Boost-die.png
    • Origin or Destination is along no Route: +Setback-die.png
  • Arrival Point: Exactly where the vessel arrives, relative to the destination point, can alter the dice pool as well.
    • In atmosphere: Setback-die.pngSetback-die.pngSetback-die.png + Upgrade Difficulty once. A dangerous and unpredictable trick, this puts the ship into the atmosphere of the planet in question, effectively aiming for hyperspace breach right at the edge of the world's gravity shadow. Upon arrival, the ship takes 1 System Strain for every Silhouette level it has, and the pilot must make a Pilot check (with a Difficulty equal to his vessel's Silhouette -1) to avoid taking an immediate Critical Hit.
    • In orbit: Setback-die.pngSetback-die.pngSetback-die.png. The ship arrives at the edge of the planet's gravity well, and is immediately coasted into its orbit. Pilot must make a Piloting check, (Dif 3) or take 3 System Strain.
    • At the edge: Setback-die.pngSetback-die.png. The ship arrives within easy sight of the planet in question, right around the lunary sphere (area where most moons orbit a planet).
    • Five minutes out: Setback-die.png. The world is clearly visible, though a short distance away.
    • Ten minutes out: No Modifiers. The ship arrives ten minutes from the destination point.
    • An hour out: Boost-die.png. The ship arrives quite a distance away (often closer to the planet's nearest neighbor than the planet itself). The destination is some distance out, with plenty of time to scan the arrival point.
    • Edge of system: Boost-die.pngBoost-die.png. The ship arrives at the edge of the system in question. This can take 1d10 hours to reach the destination or so, but making a system's-edge jump can be a good way to approach stealthily and/or with ample time to run full scans on the system as a whole.
  • Time Taken: The time it takes to plot an astrogation course is as follows:
    • Points in same System: 1 turn
    • Points in same Sector: 3 turns
    • Points in same Region: 5 turns
    • Points in different Regions: 10 turns, plus 5 turns per "band" of space between Points

Results

One Success-result.png is required to accomplish the task in the base time, arriving 10 minutes flight from the target destination,. Other results can be spent as follows:

Cost Result Options
Success-result.png
• Reduce travel time by 10%.
Advantage-result.png
• Improve arrival point by one step
• Reduce calculation time by 1 turn
Triumph-result.png
• Halve base calculation time before applying other time reductions
• Halve base travel time before applying other time reductions
Threat-result.png
• Worsen arrival point by one step
• Increase travel time by 10%.
Despair-result.png
• Double base travel time
• Trigger disastrous occurrence during travel.

Hyperspace Travel Times

  • The number given is the time in hours it takes to travel from one location to another.
  • If both sites are within the same 90º arc, halve the resultant number.
  • If both sites are in the same Sector, travel duration is 1d10 hours.
  • If both sites are in the same System, travel duration is 1 hour.
Travelling From Deep Core Core Worlds Colonies Inner Rim Expansion Regions Mid Rim Outer Rim Wild Space Unknown Regions
Deep Core 12 18 24 48 72 96 120 144 168
Core Worlds 24 6 24 36 60 84 96 120 144
Colonies 48 24 12 24 48 72 96 120 96
Inner Rim 72 36 24 18 24 48 72 96 72
Expansion Region 96 60 48 24 24 24 48 72 96
Mid Rim 120 84 72 48 24 36 24 48 72
Outer Rim 144 96 96 72 48 24 48 24 60
Wild Space 168 120 120 96 72 48 24 12 120
Unknown Regions 192 144 72 72 60 72 96 120 48